research

Phase Transitions in ZnZ_{n} Gauge Models: Towards Quantum Simulations of the Schwinger-Weyl QED

Abstract

We study the ground-state properties of a class of Zn\mathbb{Z}_n lattice gauge theories in 1 + 1 dimensions, in which the gauge fields are coupled to spinless fermionic matter. These models, stemming from discrete representations of the Weyl commutator for the U(1)\mathrm{U}(1) group, preserve the unitary character of the minimal coupling, and have therefore the property of formally approximating lattice quantum electrodynamics in one spatial dimension in the large-nn limit. The numerical study of such approximated theories is important to determine their effectiveness in reproducing the main features and phenomenology of the target theory, in view of implementations of cold-atom quantum simulators of QED. In this paper we study the cases n=2÷8n = 2 \div 8 by means of a DMRG code that exactly implements Gauss' law. We perform a careful scaling analysis, and show that, in absence of a background field, all Zn\mathbb{Z}_n models exhibit a phase transition which falls in the Ising universality class, with spontaneous symmetry breaking of the CPCP symmetry. We then perform the large-nn limit and find that the asymptotic values of the critical parameters approach the ones obtained for the known phase transition the zero-charge sector of the massive Schwinger model, which occurs at negative mass.Comment: 15 pages, 18 figure

    Similar works