Orion KL is one of the most frequently observed sources in the Galaxy, and
the site where many molecular species have been discovered for the first time.
With the availability of powerful wideband backends, it is nowadays possible to
complete spectral surveys in the entire mm-range to obtain a spectroscopically
unbiased chemical picture of the region. In this paper we present a sensitive
spectral survey of Orion KL, made with one of the 34m antennas of the Madrid
Deep Space Communications Complex in Robledo de Chavela, Spain. The spectral
range surveyed is from 41.5 to 50 GHz, with a frequency spacing of 180 kHz
(equivalent to about 1.2 km/s, depending on the exact frequency). The rms
achieved ranges from 8 to 12 mK. The spectrum is dominated by the J=1-0 SiO
maser lines and by radio recombination lines (RRLs), which were detected up to
Delta_n=11. Above a 3-sigma level, we identified 66 RRLs and 161 molecular
lines corresponding to 39 isotopologues from 20 molecules; a total of 18 lines
remain unidentified, two of them above a 5-sigma level. Results of radiative
modelling of the detected molecular lines (excluding masers) are presented. At
this frequency range, this is the most sensitive survey and also the one with
the widest band. Although some complex molecules like CH_3CH_2CN and CH_2CHCN
arise from the hot core, most of the detected molecules originate from the low
temperature components in Orion KL.Comment: Accepted for Astronomy and Astrophysics. 29 pages, 5 tables, 6
figure