Nanoparticles grown in reactive plasmas and nanodusty plasmas gain high
interest from basic science and technology. One of the great challenges of
nanodusty plasmas is the in-situ diagnostic of the nanoparticle size and
refractive index. The analysis of scattered light by means of the Mie solution
of the Maxwell equations was proposed and used as an in-situ size diagnostic
during the past two decades. Today, imaging ellipsometry techniques and the
investigation of dense, i. e. optically thick nanoparticle clouds demand for
analysis methods to take multiple scattering into account. We present the first
3D Monte-Carlo polarized radiative transfer simulations of the scattered light
in a dense nanodusty plasma. This technique extends the existing diagnostic
methods for the in-situ analysis of the properties of nanoparticles to systems
where multiple scattering can not be neglected.Comment: 5 pages, 5 figure