research

H\"older regularity of the 2D dual semigeostrophic equations via analysis of linearized Monge-Amp\`ere equations

Abstract

We obtain the H\"older regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior H\"older estimate in two dimensions for an inhomogeneous linearized Monge-Amp\`ere equation with right hand side being the divergence of a bounded vector field. As a further application of our H\"older estimate, we prove the H\"older regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.Comment: v2: title slight changed; some typos fixe

    Similar works

    Full text

    thumbnail-image

    Available Versions