research

The mirror conjecture for minuscule flag varieties

Abstract

We prove Rietsch's mirror conjecture that the Dubrovin quantum connection for minuscule flag varieties is isomorphic to the character D-module of the Berenstein-Kazhdan geometric crystal. The idea is to recognize the quantum connection as Galois and the geometric crystal as automorphic. We reveal surprising relations with the works of Frenkel-Gross, Heinloth-Ng\^o-Yun and Zhu on Kloosterman sheaves. The isomorphism comes from global rigidity results where Hecke eigensheaves are determined by their local ramification. As corollaries we obtain combinatorial identities for counts of rational curves and the Peterson variety presentation of the small quantum cohomology ring

    Similar works

    Full text

    thumbnail-image

    Available Versions