We propose an approach for semi-automatic annotation of object instances.
While most current methods treat object segmentation as a pixel-labeling
problem, we here cast it as a polygon prediction task, mimicking how most
current datasets have been annotated. In particular, our approach takes as
input an image crop and sequentially produces vertices of the polygon outlining
the object. This allows a human annotator to interfere at any time and correct
a vertex if needed, producing as accurate segmentation as desired by the
annotator. We show that our approach speeds up the annotation process by a
factor of 4.7 across all classes in Cityscapes, while achieving 78.4% agreement
in IoU with original ground-truth, matching the typical agreement between human
annotators. For cars, our speed-up factor is 7.3 for an agreement of 82.2%. We
further show generalization capabilities of our approach to unseen datasets