In this contribution we report a recently developed Anomalous-Viscous Fluid
Dynamics (AVFD) framework, which simulates the evolution of fermion currents in
QGP on top of the bulk expansion from data-validated VISHNU hydrodynamics. With
reasonable estimates of initial conditions and magnetic field lifetime, the
predicted CME signal is quantitatively consistent with change separation
measurements in 200GeV Au-Au collisions at RHIC. We further develop the
event-by-event AVFD simulations that allow direct evaluation of two-particle
correlations arising from CME signal as well as the non-CME backgrounds.
Finally we report predictions from AVFD simulations for the upcoming isobaric
(Ru-Ru v.s. Zr-Zr ) collisions that could provide the critical test of the CME
in heavy ion collisions.Comment: Contribution to the Proceedings of the XXVIth International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter
2017), Feb 5-11, Chicago, U.S.A. 4 pages, 6 figure