On Continuous-Time Gaussian Channels


A continuous-time white Gaussian channel can be formulated using a white Gaussian noise, and a conventional way for examining such a channel is the sampling approach based on the Shannon-Nyquist sampling theorem, where the original continuous-time channel is converted to an equivalent discrete-time channel, to which a great variety of established tools and methodology can be applied. However, one of the key issues of this scheme is that continuous-time feedback and memory cannot be incorporated into the channel model. It turns out that this issue can be circumvented by considering the Brownian motion formulation of a continuous-time white Gaussian channel. Nevertheless, as opposed to the white Gaussian noise formulation, a link that establishes the information-theoretic connection between a continuous-time channel under the Brownian motion formulation and its discrete-time counterparts has long been missing. This paper is to fill this gap by establishing causality-preserving connections between continuous-time Gaussian feedback/memory channels and their associated discrete-time versions in the forms of sampling and approximation theorems, which we believe will play important roles in the long run for further developing continuous-time information theory. As an immediate application of the approximation theorem, we propose the so-called approximation approach to examine continuous-time white Gaussian channels in the point-to-point or multi-user setting. It turns out that the approximation approach, complemented by relevant tools from stochastic calculus, can enhance our understanding of continuous-time Gaussian channels in terms of giving alternative and strengthened interpretation to some long-held folklore, recovering "long known" results from new perspectives, and rigorously establishing new results predicted by the intuition that the approximation approach carries

    Similar works

    Full text