We evaluate a semantic parser based on a character-based sequence-to-sequence
model in the context of the SemEval-2017 shared task on semantic parsing for
AMRs. With data augmentation, super characters, and POS-tagging we gain major
improvements in performance compared to a baseline character-level model.
Although we improve on previous character-based neural semantic parsing models,
the overall accuracy is still lower than a state-of-the-art AMR parser. An
ensemble combining our neural semantic parser with an existing, traditional
parser, yields a small gain in performance.Comment: To appear in Proceedings of SemEval, 2017 (camera-ready