research

Flux Flattening in Axion Monodromy Inflation

Abstract

String theory models of axion monodromy inflation exhibit scalar potentials which are quadratic for small values of the inflaton field and evolve to a more complicated function for large field values. Oftentimes the large field behaviour is gentler than quadratic, lowering the tensor-to-scalar ratio. This effect, known as flattening, has been observed in the string theory context through the properties of the DBI+CS D-brane action. We revisit such flattening effects in type IIB flux compactifications with mobile D7-branes, with the inflaton identified with the D7-brane position. We observe that, with a generic choice of background fluxes, flattening effects are larger than previously observed, allowing to fit these models within current experimental bounds. In particular, we compute the cosmological observables in scenarios compatible with closed-string moduli stabilisation, finding tensor-to-scalar ratios as low as r ~ 0.04. These are models of single field inflation in which the inflaton is much lighter than the other scalars through a mild tuning of the compactification data.Comment: 56 pages, 11 plot

    Similar works

    Full text

    thumbnail-image