This paper proposes a novel deep learning framework named
bidirectional-convolutional long short term memory (Bi-CLSTM) network to
automatically learn the spectral-spatial feature from hyperspectral images
(HSIs). In the network, the issue of spectral feature extraction is considered
as a sequence learning problem, and a recurrent connection operator across the
spectral domain is used to address it. Meanwhile, inspired from the widely used
convolutional neural network (CNN), a convolution operator across the spatial
domain is incorporated into the network to extract the spatial feature.
Besides, to sufficiently capture the spectral information, a bidirectional
recurrent connection is proposed. In the classification phase, the learned
features are concatenated into a vector and fed to a softmax classifier via a
fully-connected operator. To validate the effectiveness of the proposed
Bi-CLSTM framework, we compare it with several state-of-the-art methods,
including the CNN framework, on three widely used HSIs. The obtained results
show that Bi-CLSTM can improve the classification performance as compared to
other methods