The study on point sources in astronomical images is of special importance,
since most energetic celestial objects in the Universe exhibit a point-like
appearance. An approach to recognize the point sources (PS) in the X-ray
astronomical images using our newly designed granular binary-tree support
vector machine (GBT-SVM) classifier is proposed. First, all potential point
sources are located by peak detection on the image. The image and spectral
features of these potential point sources are then extracted. Finally, a
classifier to recognize the true point sources is build through the extracted
features. Experiments and applications of our approach on real X-ray
astronomical images are demonstrated. comparisons between our approach and
other SVM-based classifiers are also carried out by evaluating the precision
and recall rates, which prove that our approach is better and achieves a higher
accuracy of around 89%.Comment: Accepted by ICSP201