The number of algorithms available to reconstruct a biological network from a
dataset of high-throughput measurements is nowadays overwhelming, but
evaluating their performance when the gold standard is unknown is a difficult
task. Here we propose to use a few reconstruction stability tools as a
quantitative solution to this problem. We introduce four indicators to
quantitatively assess the stability of a reconstructed network in terms of
variability with respect to data subsampling. In particular, we give a measure
of the mutual distances among the set of networks generated by a collection of
data subsets (and from the network generated on the whole dataset) and we rank
nodes and edges according to their decreasing variability within the same set
of networks. As a key ingredient, we employ a global/local network distance
combined with a bootstrap procedure. We demonstrate the use of the indicators
in a controlled situation on a toy dataset, and we show their application on a
miRNA microarray dataset with paired tumoral and non-tumoral tissues extracted
from a cohort of 241 hepatocellular carcinoma patients