Hadoop is currently the large-scale data analysis "hammer" of choice, but
there exist classes of algorithms that aren't "nails", in the sense that they
are not particularly amenable to the MapReduce programming model. To address
this, researchers have proposed MapReduce extensions or alternative programming
models in which these algorithms can be elegantly expressed. This essay
espouses a very different position: that MapReduce is "good enough", and that
instead of trying to invent screwdrivers, we should simply get rid of
everything that's not a nail. To be more specific, much discussion in the
literature surrounds the fact that iterative algorithms are a poor fit for
MapReduce: the simple solution is to find alternative non-iterative algorithms
that solve the same problem. This essay captures my personal experiences as an
academic researcher as well as a software engineer in a "real-world" production
analytics environment. From this combined perspective I reflect on the current
state and future of "big data" research