Motivated by new capabilities to realise artificial gauge fields in ultracold
atomic systems, and by their potential to access correlated topological phases
in lattice systems, we present a new strategy for designing topologically
non-trivial band structures. Our approach is simple and direct: it amounts to
considering tight-binding models directly in reciprocal space. These models
naturally cause atoms to experience highly uniform magnetic flux density and
lead to topological bands with very narrow dispersion, without fine-tuning of
parameters. Further, our construction immediately yields instances of optical
Chern lattices, as well as band structures of higher Chern number, |C|>1