We investigate the radio emission behaviour of PSR B0823+26, a pulsar which
is known to undergo pulse nulling, using an 153-d intensive sequence of
observations. The pulsar is found to exhibit both short (~min) and unusually
long-term (~hours or more) nulls, which not only suggest that the source
possesses a distribution of nulling timescales, but that it may also provide a
link between conventional nulling pulsars and longer-term intermittent pulsars.
Despite seeing evidence for periodicities in the pulsar radio emission, we are
uncertain whether they are intrinsic to the source, due to the influence of
observation sampling on the periodicity analysis performed. Remarkably, we find
evidence to suggest that the pulsar may undergo pre-ignition periods of
'emission flickering', that is rapid changes between radio-on (active) and -off
(null) emission states, before transitioning to a steady radio-emitting phase.
We find no direct evidence to indicate that the object exhibits any change in
spin-down rate between its radio-on and -off emission modes. We do, however,
place an upper limit on this variation to be <= 6 % from simulations. This
indicates that emission cessation in pulsars does not necessarily lead to large
changes in spin-down rate. Moreover, we show that such changes in spin-down
rate will not be discernible in the majority of objects which exhibit
short-term (<= 1 d) emission cessation. In light of this, we predict that many
pulsars could exhibit similar magnetospheric and emission properties to PSR
B0823+26, but which have not yet been observed.Comment: 13 pages, 11 figures, accepted for publication in MNRAS; 1 reference
correcte