Personal data has value to both its owner and to institutions who would like
to analyze it. Privacy mechanisms protect the owner's data while releasing to
analysts noisy versions of aggregate query results. But such strict protections
of individual's data have not yet found wide use in practice. Instead, Internet
companies, for example, commonly provide free services in return for valuable
sensitive information from users, which they exploit and sometimes sell to
third parties.
As the awareness of the value of the personal data increases, so has the
drive to compensate the end user for her private information. The idea of
monetizing private data can improve over the narrower view of hiding private
data, since it empowers individuals to control their data through financial
means.
In this paper we propose a theoretical framework for assigning prices to
noisy query answers, as a function of their accuracy, and for dividing the
price amongst data owners who deserve compensation for their loss of privacy.
Our framework adopts and extends key principles from both differential privacy
and query pricing in data markets. We identify essential properties of the
price function and micro-payments, and characterize valid solutions.Comment: 25 pages, 2 figures. Best Paper Award, to appear in the 16th
International Conference on Database Theory (ICDT), 201