A Time Dependent Multi-Determinant approach to nuclear dynamics


We study a multi-determinant approach to the time evolution of the nuclear wave functions (TDMD). We employ the Dirac variational principle and use as anzatz for the nuclear wave-function a linear combination of Slater determinants and derive the equations of motion. We demonstrate explicitly that the norm of the wave function and the energy are conserved during the time evolution. This approach is a direct generalization of the time dependent Hartree-Fock method. We apply this approach to a case study of 6Li{}^6Li using the N3LO interaction renormalized to 4 major harmonic oscillator shells. We solve the TDMD equations of motion using Krylov subspace methods of Lanczos type. We discuss as an application the isoscalar monopole strength function.Comment: 38 pages, additional calculations included. Accepted for publication, Int. J. of Mod. Phys.

    Similar works