CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
Authors
Dhivya Arasappan
Wenjun Bao
+202 more
Bart Barlogie
Frank Berthold
Hans Bitter
Richard J. Brennan
Benedikt Brors
Andreas Buness
Pierre R. Bushel
Max Bylesjo
Fabien Campagne
Gregory Campbell
Jennifer G. Catalano
Chang Chang
Minjun Chen
Rong Chen
Weijie Chen
Jie Cheng
Jing Cheng
Yiyu Cheng
Jeff Chou
Tzu-Ming Chu
Jian Cui
Wendy Czika
Timothy S. Davison
Mauro Delorenzi
Francesca Demichelis
Xutao Deng
Youping Deng
Viswanath Devanarayan
David J. Dix
Joaquin Dopazo
Kevin C. Dorff
Damir Dosymbekov
Pan Du
Roland Eils
Fathi Elloumi
Jianqing Fan
Shicai Fan
Xiaohui Fan
Hong Fang
Yang Feng
Mark Fielden
Matthias Fischer
Jennifer Fostel
Stephanie Fulmer-Smentek
Cesare Furlanello
James C. Fuscoe
Brandon D. Gallas
Laurent Gatto
Weigong Ge
Xijin Ge
Darlene R. Goldstein
Nina Gonzaludo
Federico M. Goodsaid
Li Guo
Donald N. Halbert
Jing Han
Stephen C. Harris
Christos Hatzis
Damir Herman
Kenneth R. Hess
Huixiao Hong
Jun Huan
Jianping Huang
Rafael A. Irizarry
Roderick V. Jensen
Rui Jiang
Charles D. Johnson
Wendell D. Jones
Richard Judson
Dilafruz Juraeva
Giuseppe Jurman
Yvonne Kahlert
Sadik A. Khuder
Matthias Kohl
Samir Lababidi
Christophe G. Lambert
Jianying Li
Li Li
Li Li
Menglong Li
Quan-Zhen Li
Shao Li
Yanen Li
Zhen Li
Zhiguang Li
Simon M. Lin
Guozhen Liu
Jie Liu
Ying Liu
Zhichao Liu
Edward K. Lobenhofer
Anne Bergstrom Lucas
Jun Luo
Wen Luo
Manuel Madera
MAQC Consortium
Francisco Martinez-Murillo
Matthew N. McCall
Ignacio Medina
Joseph Meehan
Dalila B. Megherbi
Lu Meng
Kelci Miclaus
Richard A. Moffitt
David Montaner
Piali Mukherjee
George J. Mulligan
Padraic Neville
Tatiana Nikolskaya
Yuri Nikolsky
Baitang Ning
Andre Oberthuer
Grier P. Page
Joel Parker
R. Mitchell Parry
Richard S. Paules
Xuejun Peng
Gene A. Pennello
Roger G. Perkins
Ron L. Peterson
John H. Phan
Reena Philip
Vlad Popovici
Nathan D. Price
Raj K. Puri
Lajos Pusztai
Feng Qian
Brian Quanz
Yi Ren
Samantha Riccadonna
Alan H. Roter
Frank W. Samuelson
Andreas Scherer
Uwe Scherf
Martin M. Schumacher
Joseph D. Shambaugh
John D., Jr. Shaughnessy
Leming Shi
LM Shi
Qiang Shi
Tieliu Shi
Weiwei Shi
Richard Shippy
Shengzhu Si
Aaron Smalter
Christos Sotiriou
Mat Soukup
Frank Staedtler
Guido Steiner
Todd H. Stokes
Zhenqiang Su
Qinglan Sun
Jaeyun Sung
W. Fraser Symmans
Pei-Yi Tan
Rong Tang
Zivana Tezak
Danielle Thierry-Mieg
Jean Thierry-Mieg
Venkata Thodima
Russell S. Thomas
Brett Thorn
Weida Tong
Johan Trygg
Marina Tsyganova
Yaron Turpaz
Silvia C. Vega
Lakshmi Vishnuvajjala
Roberto Visintainer
Juergen von Frese
Stephen J. Walker
Charles Wang
Eric Wang
Junwei Wang
May D. Wang
Sue Jane Wang
Wei Wang
Zhining Wen
Frank Westermann
James C. Willey
Russell D. Wolfinger
Matthew Woods
Jianping Wu
Shujian Wu
Yichao Wu
Nianqing Xiao
Qian Xie
Joshua Xu
Lei Xu
Lun Yang
Waleed A. Yousef
Xiao Zeng
Jialu Zhang
John Zhang
Li Zhang
Liang Zhang
Min Zhang
Xuegong Zhang
Chen Zhao
Sheng Zhong
Yiming Zhou
Sheng Zhu
Publication date
1 January 2010
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis. © 2010 Nature America, Inc. All rights reserved.0SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Similar works
Full text
Available Versions
Hochschulschriftenserver der Hochschule Furtwangen
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus4.hsfu:1377
Last time updated on 18/12/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1038%2Fnbt.1665
Last time updated on 01/04/2019
Serveur académique lausannois
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:serval.unil.ch:BIB_48AD782...
Last time updated on 24/10/2013
Infoscience - École polytechnique fédérale de Lausanne
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:infoscience.tind.io:172455
Last time updated on 09/02/2018
DI-fusion
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dipot.ulb.ac.be:2013/11975...
Last time updated on 25/07/2012
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.ipe.ac.cn:122111/6111
Last time updated on 09/11/2016