AbstractPseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1–46] and [Selenick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2000) 163–181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104]. Both types of pseudo-splines provide a rich family of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], Dong and Shen gave a regularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], which also appeared in [A. Cohen, J.P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351–365] and [I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case l=N−1. In this note, we will give a new insight into this proposition