Mixed Bohr radius in several variables

Abstract

Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentin

    Similar works