research

Counterions and water molecules in charged silicon nanochannels: the influence of surface charge discreteness

Abstract

In order to detect the effect of the surface charge discreteness on the properties at the solid-liquid interface, molecular dynamics simulation model taking consideration of the vibration of wall atoms was used to investigate the ion and water performance under different charge distributions. Through the comparison between simulation results and the theoretical prediction, it was found that, with the degree of discreteness increasing, much more counterions were attracted to the surface. These ions formed a denser accumulating layer which located much nearer to the surface and caused charge inversion. The ions in this layer were non-hydrated or partially hydrated. When a voltage was applied across the nanochannel, this dense accumulating layer did not move unlike the ions near uniformly charged surface. From the water density profiles obtained in nanochannels with different surface charge distributions, the influence of the surface charge discreteness on the water distributions could be neglected

    Similar works

    Full text

    thumbnail-image

    Available Versions