Video recommendation has become an essential way of helping people explore
the massive videos and discover the ones that may be of interest to them. In
the existing video recommender systems, the models make the recommendations
based on the user-video interactions and single specific content features. When
the specific content features are unavailable, the performance of the existing
models will seriously deteriorate. Inspired by the fact that rich contents
(e.g., text, audio, motion, and so on) exist in videos, in this paper, we
explore how to use these rich contents to overcome the limitations caused by
the unavailability of the specific ones. Specifically, we propose a novel
general framework that incorporates arbitrary single content feature with
user-video interactions, named as collaborative embedding regression (CER)
model, to make effective video recommendation in both in-matrix and
out-of-matrix scenarios. Our extensive experiments on two real-world
large-scale datasets show that CER beats the existing recommender models with
any single content feature and is more time efficient. In addition, we propose
a priority-based late fusion (PRI) method to gain the benefit brought by the
integrating the multiple content features. The corresponding experiment shows
that PRI brings real performance improvement to the baseline and outperforms
the existing fusion methods