research

3D Shape Segmentation with Projective Convolutional Networks

Abstract

This paper introduces a deep architecture for segmenting 3D objects into their labeled semantic parts. Our architecture combines image-based Fully Convolutional Networks (FCNs) and surface-based Conditional Random Fields (CRFs) to yield coherent segmentations of 3D shapes. The image-based FCNs are used for efficient view-based reasoning about 3D object parts. Through a special projection layer, FCN outputs are effectively aggregated across multiple views and scales, then are projected onto the 3D object surfaces. Finally, a surface-based CRF combines the projected outputs with geometric consistency cues to yield coherent segmentations. The whole architecture (multi-view FCNs and CRF) is trained end-to-end. Our approach significantly outperforms the existing state-of-the-art methods in the currently largest segmentation benchmark (ShapeNet). Finally, we demonstrate promising segmentation results on noisy 3D shapes acquired from consumer-grade depth cameras.Comment: This is an updated version of our CVPR 2017 paper. We incorporated new experiments that demonstrate ShapePFCN performance under the case of consistent *upright* orientation and an additional input channel in our rendered images for encoding height from the ground plane (upright axis coordinate values). Performance is improved in this settin

    Similar works

    Full text

    thumbnail-image

    Available Versions