We present an attention-based model that reasons on human body shape and
motion dynamics to identify individuals in the absence of RGB information,
hence in the dark. Our approach leverages unique 4D spatio-temporal signatures
to address the identification problem across days. Formulated as a
reinforcement learning task, our model is based on a combination of
convolutional and recurrent neural networks with the goal of identifying small,
discriminative regions indicative of human identity. We demonstrate that our
model produces state-of-the-art results on several published datasets given
only depth images. We further study the robustness of our model towards
viewpoint, appearance, and volumetric changes. Finally, we share insights
gleaned from interpretable 2D, 3D, and 4D visualizations of our model's
spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201