Frequent sequence mining methods often make use of constraints to control
which subsequences should be mined. A variety of such subsequence constraints
has been studied in the literature, including length, gap, span,
regular-expression, and hierarchy constraints. In this paper, we show that many
subsequence constraints---including and beyond those considered in the
literature---can be unified in a single framework. A unified treatment allows
researchers to study jointly many types of subsequence constraints (instead of
each one individually) and helps to improve usability of pattern mining systems
for practitioners. In more detail, we propose a set of simple and intuitive
"pattern expressions" to describe subsequence constraints and explore
algorithms for efficiently mining frequent subsequences under such general
constraints. Our algorithms translate pattern expressions to compressed finite
state transducers, which we use as computational model, and simulate these
transducers in a way suitable for frequent sequence mining. Our experimental
study on real-world datasets indicates that our algorithms---although more
general---are competitive to existing state-of-the-art algorithms.Comment: Long version of the paper accepted at the IEEE ICDM 2016 conferenc