Locally decodable codes (LDCs) are error correcting codes that allow for
decoding of a single message bit using a small number of queries to a corrupted
encoding. Despite decades of study, the optimal trade-off between query
complexity and codeword length is far from understood. In this work, we give a
new characterization of LDCs using distributions over Boolean functions whose
expectation is hard to approximate (in~L∞~norm) with a small number of
samples. We coin the term `outlaw distributions' for such distributions since
they `defy' the Law of Large Numbers. We show that the existence of outlaw
distributions over sufficiently `smooth' functions implies the existence of
constant query LDCs and vice versa. We give several candidates for outlaw
distributions over smooth functions coming from finite field incidence
geometry, additive combinatorics and from hypergraph (non)expanders.
We also prove a useful lemma showing that (smooth) LDCs which are only
required to work on average over a random message and a random message index
can be turned into true LDCs at the cost of only constant factors in the
parameters.Comment: A preliminary version of this paper appeared in the proceedings of
ITCS 201