In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC),
planned to start around 2023-2025, the ATLAS experiment will undergo a
replacement of the Inner Detector. A higher luminosity will imply higher
irradiation levels and hence will demand more ra- diation hardness especially
in the inner layers of the pixel system. The n-in-p silicon technology is a
promising candidate to instrument this region, also thanks to its
cost-effectiveness because it only requires a single sided processing in
contrast to the n-in-n pixel technology presently employed in the LHC
experiments. In addition, thin sensors were found to ensure radiation hardness
at high fluences. An overview is given of recent results obtained with not
irradiated and irradiated n-in-p planar pixel modules. The focus will be on
n-in-p planar pixel sensors with an active thickness of 100 and 150 um recently
produced at ADVACAM. To maximize the active area of the sensors, slim and
active edges are implemented. The performance of these modules is investigated
at beam tests and the results on edge efficiency will be shown