Identifying hierarchies and rankings of nodes in directed graphs is
fundamental in many applications such as social network analysis, biology,
economics, and finance. A recently proposed method identifies the hierarchy by
finding the ordered partition of nodes which minimises a score function, termed
agony. This function penalises the links violating the hierarchy in a way
depending on the strength of the violation. To investigate the resolution of
ranking hierarchies we introduce an ensemble of random graphs, the Ranked
Stochastic Block Model. We find that agony may fail to identify hierarchies
when the structure is not strong enough and the size of the classes is small
with respect to the whole network. We analytically characterise the resolution
threshold and we show that an iterated version of agony can partly overcome
this resolution limit.Comment: 27 pages, 9 figure