One of the tasks of the Bayesian inverse problem is to find a good estimate
based on the posterior probability density. The most common point estimators
are the conditional mean (CM) and maximum a posteriori (MAP) estimates, which
correspond to the mean and the mode of the posterior, respectively. From a
theoretical point of view it has been argued that the MAP estimate is only in
an asymptotic sense a Bayes estimator for the uniform cost function, while the
CM estimate is a Bayes estimator for the means squared cost function. Recently,
it has been proven that the MAP estimate is a proper Bayes estimator for the
Bregman cost if the image is corrupted by Gaussian noise. In this work we
extend this result to other noise models with log-concave likelihood density,
by introducing two related Bregman cost functions for which the CM and the MAP
estimates are proper Bayes estimators. Moreover, we also prove that the CM
estimate outperforms the MAP estimate, when the error is measured in a certain
Bregman distance, a result previously unknown also in the case of additive
Gaussian noise