This paper describes orthopedic surgical planning based on the integration of RE and RP.
Using symmetrical characteristics of the human body, CAD data of the original bone without
damages for the injured extent are generated from a mirror transformation of undamaged bone
data for the uninjured extent. The physical model before the injury is manufactured from RP
apparatus. Surgical planning, such as the selection of the proper implant, pre-forming of the
implant, decision of fixation positions and incision sizes, etc., is determined by a physical
simulation using the physical model. In order to examine the applicability and efficiency of
surgical planning technology for orthopedics, various case studies, such as a proximal tibia
plateau fracture, a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are
carried out. As a result of the examination, it has been shown that the orthopedic surgical
planning based on the integration of RE and RP is an efficient surgical tool.Mechanical Engineerin