Motion planning for optimal information gathering in an opportunistic navigation (OpNav)
environment is considered. An OpNav environment can be thought of as a radio
frequency signal landscape within which a receiver locates itself in space and time by extracting
information from ambient signals of opportunity (SOPs). The receiver is assumed
to draw only pseudorange-type observations from the SOPs, and such observations are
fused through an estimator to produce an estimate of the receiver’s own states. Since
not all SOP states in the OpNav environment may be known a priori, the receiver must
estimate the unknown SOP states of interest simultaneously with its own states. In this
work, the following problem is studied. A receiver with no a priori knowledge about its
own states is dropped in an unknown, yet observable, OpNav environment. Assuming that
the receiver can prescribe its own trajectory, what motion planning strategy should the
receiver adopt in order to build a high-fidelity map of the OpNav signal landscape, while
simultaneously localizing itself within this map in space and time? To answer this question,
first, the minimum conditions under which the OpNav environment is fully observable are
established, and the need for receiver maneuvering to achieve full observability is highlighted.
Then, motivated by the fact that not all trajectories a receiver may take in the
environment are equally beneficial from an information gathering point of view, a strategy
for planning the motion of the receiver is proposed. The strategy is formulated in a
coupled estimation and optimal control framework of a gradually identified system, where
optimality is defined through various information-theoretic measures. Simulation results
are presented to illustrate the improvements gained from adopting the proposed strategy
over random and pre-defined receiver trajectories.Aerospace Engineering and Engineering Mechanic