research

Mathematical modeling of non-isothermal adsorption mass transfer in nanoporous catalysts

Abstract

Розглянуто математичну модель неізотермічного адсорбційного масопереносу в пласті мікропористого каналізатора з урахуванням впливу температурної складової. Побудовано аналітичний розв’язок запропонованої моделі з використанням інтегральних перетворень Фур’є та Лапласа. Проведено числове моделювання зміни концентрації адсорбтиву в пласті мікропористого середовища на різних стадіях процесу при різних значеннях температуриThe mathematical model of non-isothermal adsorption mass transfer in micro- and nanopores of intraparticle and interparticle spaces catalytic media, which considers effect of temperature during adsorption process, has been considered. The paper is based on the results of previously proposed bi-porous model and takes into account dependence of diffusion and flow temperature changes of environment on concentration profiles of adsorbed components in interparticle space of micro- and nano poreus of crystallites, which is a limiting factor of adsorption process. Mathematical model consists of a system of three partial differential equations, the first equation describing material balance in the interparticle space (gas phase), the second equation describing diffusion heat balance in the media and the third equation is a internal kinetic equation, which establishes connection between gas and solid phases based on the Langmuir-Hinshelwood balance equation. Solution of non-isothermal mass transfer adsorption model is built with the Laplace’s and Fourier’s integral transformations. Obtained analytical solution of model has the advantage over numerical solution due to a significant reduction in the number of iterations that is crucial for use gradients methods of identification to solve problems of kinetic parameters determination from experimental distributions. Numerical model of concentration profiles in micropores particles at different values of temperature as a function of layer thickness coordinate for different moments from the beginning of the adsorption process has been presented. Having analyzed the graphs we see that the concentrations of benzene in the middle of nanopore particles of adsorbent increases from the middle to the edge, and the value depends on the temperature. Thus for different temperatures, characteristics of concentration profiles are the same

    Similar works