The ultra weak variational formulation (UWVF) approach is used to study the effect of semi-transparent road traffic noise barriers of limited height. This numerical method is extended to simulate sound propagation through a porous medium, based on the Zwicker and Kosten phenomenological porous rigid-frame model. An efficient approach to calculate noise levels in multi-lane road traffic noise situations is presented. The UWVF method was validated successfully by comparison with finite-difference time-domain (FDTD) calculations, for the case of sound propagation near a porous, low-height, and complex shaped noise barrier, and for sound propagation above porous ground in a refracting atmosphere. An assessment is made of the shielding of various porous low-height noise barriers for people on the pavement along the road. Porous barriers were shown to improve noise shielding when compared to geometrically identical rigid noise barriers