CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research article
Machine learning-driven prediction of deep eutectic solvents’ heat capacity for sustainable process design
Authors
M. Natália D. S. Cordeiro
Ana Rita C. Duarte
+3 more
Elisabete S. C. Ferreira
Reza Haghbakhsh
Amit Kumar Halder
Publication date
15 January 2025
Publisher
Doi
Abstract
Funding Information: This work received financial support from FCT/MCTES (UIDB/50006/2020 DOI 10.54499/UIDB/50006/2020) through national funds. This work received financial support from FCT/MCTES (LA/P/0008/2020 DOI 10.54499/LA/P/0008/2020, UIDP/50006/2020 DOI 10.54499/UIDP/50006/2020, and UIDB/50006/2020 DOI 10.54499/UIDB/50006/2020), through national funds. The authors also acknowledge FCT by funding CEEC projects 2020.01423.CEECIND/CP1596/CT0003 and 10.54499/2022.05803.CEECIND/CP1725/CT0003. Publisher Copyright: © 2024 The Author(s)Heat capacity, a crucial physical property for chemical processes, is often understudied in Deep Eutectic Solvents (DESs), which in turn are promising green alternatives to environmentally hazardous conventional solvents. This work addresses this gap by developing a machine learning model to predict DES heat capacity and identify key structural features influencing it. We employed a dataset of 530 DESs with corresponding experimental heat capacity values. Quantum-chemical COSMO-RS-based descriptors, capturing detailed information about DES structures, were calculated for each data point. Various machine learning algorithms, namely k-Nearest Neighbours (kNN), Random Forests (RF), Neural Network Multilayer Perceptron (MLP), and Support Vector Machines (SVM) were explored alongside a linear model (Multiple Linear Regression, MLR). Hyperparameter optimisation ensured all models were fine-tuned for optimal performance. The most successful model, based on the MLP technique, achieved remarkably low Average Absolute Relative Deviation (AARD) values of 0.500 % and 3.999 % for the training and test sets, respectively. This signifies a significant improvement in prediction accuracy compared to traditional methods. Furthermore, by applying a SHapley Additive exPlanations (SHAP) analysis, we identified the most crucial structural factors within DES components that govern their heat capacity. This comprehensive investigation offers valuable insights that can pave the way for an efficient design of novel DESs in the future.publishersversionpublishe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Repositório da Universidade Nova de Lisboa
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:run.unl.pt:10362/185008
Last time updated on 26/09/2025