International audienceRobotic microhandling is a promising way to assemble microcomponents in order to manufacture new generation of Hybrid Micro ElectroMechanical Systems (HMEMS). However, at the scale of several micrometers, adhesion phenomenon highly perturbs the micro-objects release and the positioning. This phenomenon is directly linked to both the object and the gripper surface chemical composition. We propose to control adhesion by using chemical self-assembly monolayer (SAM) on both surfaces. Different types of chemical functionalisation have been tested and this paper only focuses on the presentation of aminosilane grafted (3 (ethoxydimethylsilyl) propyl amine (APTES) and (3 aminopropyl) triethoxysilane (APDMES)). We show that the liquid pH can be used to modify the adhesion and to switch from an attractive behaviour to a repulsive behaviour. The pH control can thus be used to increase adhesion during handling and cancel adhesion during release. Experiments have shown that the pH control is able to control the release of a micro-object. This paper shows the relevance of a new type of reliable submerged robotic microhandling principle, which is based an adjusting chemical properties of liquid