CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research article
Beyond dental radiographs, a radiomics-based study for the classification of caries extension and depth
Authors
Francesco Amato
Francesca Angelone
+8 more
Niccolò Giuseppe Armogida
Luigi Esposito
Alfonso Maria Ponsiglione
Carlo Rengo
Sandro Rengo
Mario Sansone
Parisa Soltani
Gianrico Spagnuolo
Publication date
1 January 2025
Publisher
Doi
Abstract
Background/purpose:Traditionalcariesdetectionreliesonvisualandradiographic analysis.Whiledeeplearninghasbeenappliedtoclassifycariesextent,nostudiesclassify cariesdepthusingradiomicfeatures inintraoralphotographicimages.Thisstudyevaluated aradiomics-basedapproachwithmachinelearning(ML)toclassifycariesextentanddepth, traditionallyassessedviaradiographs,usingintraoralphotographs. Materialsandmethods:StandardizedintraoralphotographsweretakenwithaNikonD7500 andMacroFlashMF-R76.Onlyimagesofhealthyteethorcariouslesionswereincluded.Images wereresized, segmentedwithLabelme,andclassifiedusing ICDASandE-Dscales.Data augmentationincreasedsamplesize.Radiomicfeatureswereextractedforeachcolorchannel usingPyradiomics.Featureselectionmethods(AUC-ROC,ReliefF,LASSO,backwardselection) wereappliedwithin5-foldcross-validationtopreventbias.MLclassifiers(LDA,k-NN,SVM, NNET)evaluatedaccuracy,sensitivity,andspecificity.Modelexplainabilityassessedfeature influenceviapartialdependenceplots,residualanalysis,andbreakedownprofile. Results:NNETwithbackwardselectionachievedhighaccuracy(87.6é5.4%).Sensitivityand specificityrangedfrom61.5%to93%and73é0%,respectively.Greenandredchannel
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Archivio della ricerca - Università degli studi di Napoli Federico II
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.iris.unina.it:11588/10...
Last time updated on 11/06/2025
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:08906489c...
Last time updated on 13/10/2025