Olivine major and trace element compositions coupled with spinel chemistry to unravel the magmatic systems feeding monogenetic basaltic volcanoes


Monogenetic basaltic volcanic systems, despite their considerable smaller size and shorter lifetime compared to polygenetic volcanoes, can have complex pre-eruptive histories and composite volcanic facies architectures. Their source-to-surface investigation is essential for our better understanding of monogenetic volcanism and requires high-resolution mineral-scale analyses. In this study, we focus on diversely zoned olivine crystals and their spinel inclusions from alkaline basaltic volcanics that are the result of mixing of numerous magmas, crystals and fragments of various origins. The Fekete-hegy volcanic complex is one of the largest and most composite eruptive centers in the intracontinental monogenetic Bakony–Balaton Highland Volcanic Field (western Pannonian Basin, Eastern Central Europe). It is a compound multi-vent system built up by multiple eruption episodes: initial maar-forming phreatomagmatic eruptions were followed by massive lava flows and magmatic explosive activity. We performed stratigraphically controlled sampling in order to reveal the history of the successively erupted magma batches represented by the distinct eruptive units, as well as to discover the petrogenetic processes that controlled the evolution of the magmatic system. The juvenile pyroclasts of the phreatomagmatic eruption products (unit 1) contain a remarkably diverse mineral assemblage including five different olivine types and three distinct spinel groups. In addition, they comprise various xenoliths. Based on detailed textural investigations combined with in situ electron microprobe analyses, high-resolution laser ablation ICP-MS trace element mapping and single spot measurements on the variably zoned olivines of unit 1 samples, eight distinct environments are inferred to have been involved in their formation. Four of these environments account for the significant compositional variation of the olivine-hosted spinel inclusions. A complex set of open- and closed-system petrogenetic processes operated during the evolution of the magmatic system: magma stalling, accumulation, storage, fractionation, mixing, replenishments, cumulate remobilization, incorporation of foreign fragments and crystals from the wall rocks. All these diverse environments and processes resulted in the mixed character of the erupted magmas during the initial phreatomagmatic eruptive phase. In contrast, the uniform petrological features and the small variations shown by the olivines and spinels from unit 2‐–3 indicate that the later magmatic explosive – effusive phase was preceded by a considerable change in the magmatic system; it experienced a simple evolution through olivine + spinel fractional crystallization without any of the complexities seen during the initial phase. The present study emphasizes the importance of high-resolution mineral-scale textural and chemical investigations to unravel the complexity of the sub-volcanic magmatic systems feeding monogenetic basaltic volcanoes. Compared to the application of whole-rock geochemistry alone, this approach enables a direct and more detailed insight into the architecture and evolution of these systems

    Similar works