LED-valaistuksen soveltuvuudesta ja energian kulutuksesta ei ole korkeilla kasvustoilla aikaisemmin tehty
kokeita. Tässä hankkeessa vertasimme LED-valaisinten soveltuvuutta kasvihuonekurkun valotukseen
kun kontrollina oli HPS (suurpainenatrium)-valaisin. Kasvihuonekurkulla käytetään yleisesti ylävalojen
lisäksi välivaloja, jotka asennetaan kasvuston puoliväliin valaisemaan alempia lehtikerroksia. Tutkimuksessa
olivat ylä- ja välivaloina molemmat edellä mainitut valaisintyypit ja lisäksi mukana oli nk. hybridiratkaisu,
jossa ylävalona oli HPS ja välivalona LED. LED-valona oli Valoya-yrityksen AP 67 valaisin ja
HPS-valona Philipsin 400 W:n polttimot ylävalona ja 250 W:n polttimot välivalona. LED-ylävalon asennusteho
oli 128 W/m2 ja välivalon 64 W/m2. HPS:n ylävalon asennusteho oli 180 W/m2 ja välivalon 56
W/m2. Viljelykokeita tehtiin kaksi, joista toinen oli talvella ja toinen kesällä. Koejäsenet oli sijoitettu eri
viljelyhuoneisiin. Molemmissa kokeissa valotustunnit olivat samansuuruiset eri koejäsenissä. Kesällä
valotettiin vähemmän kuin talvella johtuen suuresta luonnonvalon määrästä.
Talviviljelyssä hybridihuoneessa (HPS+LED) viljellyn kurkun kilosato oli suurin (24kg/kasvi) ja LED
(LED+LED) huoneen sato pienin (18 kg/kasvi). HPS huoneen sato oli 21 kg/kasvi. HPS (HPS+HPS)
huoneen ja hybridihuoneen kurkkujen kappalemäärät olivat samat. Kesällä satomäärissä ei ollut eroja eri
huoneiden välillä.
LED huoneen kasvit olivat talvella pidempiä ja niissä oli vähemmän lehtiä kuin muissa huoneissa. LED
huoneen kasvien lehtien koko oli suurin. Hybridihuoneen fotosynteesitehokkuus oli välivalon kohdalla
muita huoneita parempi. HPS-ylävalon alla kasvaneiden kasvien ylälehtien lämpötila oli korkeampi kuin
LED-valojen alla kasvaneiden kasvien. Lämpösäteily HPS-valaisimesta kohotti kasvien lämpötilaa, mikä
edisti lehtien kehitysnopeutta ja kukka-aiheiden muodostumista. HPS välivalon läheisyydessä kurkunlehtien
lämpötila oli 2-3 °C korkeampi kuin LED-valon läheisyydessä. Liian korkea lämpötila saattaa olla
haitallinen kasvien kehityksen kannalta (mm. yhteyttämistehokkuus).
LED huoneen sähkönkulutus oli 20-25 % muita huoneita pienempi kurkkukiloa kohti. Toisaalta LEDhuoneessa
käytettiin talvella huomattavasti enemmän lämmitystä kurkkukiloa kohti kuin muissa huoneissa,
koska LED-huoneessa sato oli keskitalvella alhainen. Alhaisen sadon syy oli mahdollisesti LEDhuoneen
matala asennusteho. Hybridihuone kulutti talvella sähköä 10 % vähemmän kurkkukiloa kohti
kuin HPS huone ja kesällä suunnilleen yhtä paljon.
Tämän tutkimuksen perusteella hybridiratkaisu kurkun valotuksessa osoittautui tehokkaaksi valotusratkaisuksi
ympärivuotisessa kurkun viljelyssä. Kokeessa käytetty LED-valaisin ei ollut riittävän tehokas
ylävaloksi. Valotuksen ja lämmityksen käytön tulokset eri valaistustavoissa mahdollistavat vaihtoehtoisten
valaistustapojen muuttuvien kustannusten ja mahdollisten investointikustannusten vertailun.A limited amount of data is available for the applicability and energy efficiency of LED lighting in highwire
greenhouse production. In the present study we compared the performance of LED luminaires with
the traditional HPS (high pressure sodium) lamps in a year-around cucumber production. In addition to
top lighting, the experimental setup included interlighting in order to improve the lighting conditions at
lower level of the canopy.
Two independent experiments were conducted in winter and summer. Lighting treatments (top +
interlighting) located in separate greenhouse compartments were: HPS+HPS, HPS+LED and LED+LED.
LED luminaires (AP 67) were provided by Valoya Ltd. HPS bulbs were from Philips Ltd (400 W at the
top and 250 W as interlighting). Installation powers applied for the top and interlighting were: LED 128
W/m2 and 64 W/m2, and HPS 180 W/m2 and 56 W/m2. Duration of daily supplementary lighting was
depended on daily solar radiation and was equal in all compartments.
In the winter experiment first class cucumber yield was higher (24 kg/plant) under HPS+LED lighting
than under HPS+HPS (21 kg/plant) and LED+LED (18 kg/plant) lighting. The differences between the
treatments were statistically significant. The highest fruit number per plant was in HPS+HPS and in
HPS+LED. In the summer, no statistically significant yield differences were found.
In the winter, plants in the LED+LED compartment were taller and had a lower number of leaves than
plants in the other compartments. The rate of photosynthesis measured at the level of the interlights was
highest in the HPS+LED compartment. Infrared radiation from the HPS lights warmed plant surfaces.
The HPS lighting raised leaf temperatures 2 to 3 °C on the upper part of the canopy and at the level of
interlights as compared to the LED lighting. This may have enhanced leaf and fruit formation rate and
enhanced transport of assimilates to the fruits. Yet, leaf temperatures at the interlight height may have
been higher than optimal for net photosynthesis.
Electricity consumption (kWh/kg fruit) was 20 to 25 % lower in the LED+LED compartment than in the
other compartments. However, in LED+LED fruit growth was low in mid-winter and heating needed to
be increased to compensate for low heat output from the LED lighting. These factors resulted in significantly
higher heat consumption (kWh/kg fruit) in LED+LED than in the other compartments. In summer
electricity consumptions in HPS+LED did not differ from consumption in HPS+HPS but in winter the
electricity consumption was 10 % lower in HPS+LED.
The overall results of this study suggest that the HPS+LED lighting is an efficient lighting approach in
the year-around high-wire cucumber production in Scandinavian conditions. It can be an alternative to the
current HPS+HPS lighting. Pure LED+LED lighting could not perform as well as the other alternatives,
mainly probably because total light output from the tested lighting could not drive optimal development
and sufficient photosynthesis.
The obtained data on lighting and heating in the three tested lighting systems allows calculation of direct
energy costs and thus estimation of possible cost of investment