A novel variable temperature rolling (VTR) and annealing process was conducted on a metastable austenitic stainless steel. Strain softening occurred during tensile straining in both cold rolled and cryogenic rolled-annealed steels, leading to low uniform elongations of only 2-3%. In contrast, thanks to the metastable dual-phase heterogeneous lamellar structure achieved via the VTR process, a ultra-high strength of over 1 GPa was obtained, and strain hardening led to a remarkable increase of uniform elongation up to 10%. The high strength and ductility are attributed to the significant work-hardening derived from the superior heterogeneous deformation-induced hardening and sustained transformation-induced plasticity effect. We identify a new variable temperature rolling and annealing process to achieve a metastable dual-phase heterogeneous lamellar structure, which overcomes strength-ductility trade-off by coupling of HDI hardening and TRIP effect.</p