journal article text

Fragment Coupling Approach to Diaporthein B

Abstract

Pimarane diterpenes are produced by a diverse array of plants, fungi, and bacteria. Many members of this family possess antimicrobial and antiproliferative activities. The pimarane diterpenes are characterized by a tricyclic carbon scaffold comprising three fused six-membered rings and at least three quaternary centers. Here, we describe two convergent, fragment-based strategies toward the synthesis of diaporthein B (3), one of the most highly oxidized pimarane diterpenes. The first approach provided access to the tricyclic carbon scaffold of the target and featured a highly diastereoselective fragment coupling, a novel carbonylative Stille cross-coupling to directly access an α-hydroxyketone from a vinyl iodide, and a tandem aldol cyclization–deprotection cascade. The second route utilized a diastereoselective 1,4-addition of a silyloxyfuran to an unsaturated ketone, followed by an epoxidation–ring opening sequence, to access a highly oxidized intermediate containing two elaborated cyclohexane rings. The chemistry developed herein may ultimately be useful in an eventual synthesis of this class of natural products

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 06/07/2023