CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
journal article text
The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study
Authors
Angela M. Wood (7418789)
Jessica K. Barrett (7771490)
Michael J. Sweeting (7703687)
Simon G. Thompson (7658129)
Publication date
11 October 2016
Publisher
Abstract
Many prediction models have been developed for the risk assessment and the prevention of cardiovascular disease in primary care. Recent efforts have focused on improving the accuracy of these prediction models by adding novel biomarkers to a common set of baseline risk predictors. Few have considered incorporating repeated measures of the common risk predictors. Through application to the Atherosclerosis Risk in Communities study and simulations, we compare models that use simple summary measures of the repeat information on systolic blood pressure, such as (i) baseline only; (ii) last observation carried forward; and (iii) cumulative mean, against more complex methods that model the repeat information using (iv) ordinary regression calibration; (v) risk-set regression calibration; and (vi) joint longitudinal and survival models. In comparison with the baseline-only model, we observed modest improvements in discrimination and calibration using the cumulative mean of systolic blood pressure, but little further improvement from any of the complex methods. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd
Similar works
Full text
Available Versions
The Francis Crick Institute
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/10220...
Last time updated on 06/04/2020