journal article text

Fabrication and Characterization of a Novel Inclusion Complex of Chiral Monomer Derived from (+)-Camphor with β-Cyclodextrins

Abstract

In order to develop a highly ordered polymer dopant to improve the physical properties of polymer materials for microsystems, a novel supramolecular inclusion complex (IC) of chiral bornyl 4-(6-acryloyloxyhexyloxy) phenyl-4′-benzoate (BAPB) threaded with β-cyclodextrins (β-CDs) was synthesized. The inclusion complex was identified using Fourier transform infrared (FTIR), UV, 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, 1H NMR, and X-ray diffraction (XRD). The construction of the fibrous self-assembled inclusion complex was confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The highly ordered polymerized inclusion complex β-CD-BAPB revealed significant birefringence and was confirmed using polarized optical microscopy (POM). Polymerization of self-assembled nanofibrous monomers with methyl methacrylate was carried out, and the distribution of the nanofibers in the polymer matrix was confirmed using POM. This investigation demonstrates a novel method for the fabrication of polymeric nanofibers with highly ordered, self-assembled functional monomers. The polymeric nanofibers are expected to improve the physical properties of polymer films in the field of microelectric and micromachine systems (MEMS)

    Similar works

    Full text

    thumbnail-image