Polysaccharides were believed to play an important role in the mineralization process of many organisms. As the source of continuously and uniformly releasing alginate molecules and Ca2+, alginate/Ca nanospherical gel was employed in the solution to induce the nucleation and growth of CaCO3. Time-resolved transmission electron microscopy (TEM) was applied to study the crystallization at a very early stage. It was found that the initially formed lens-like vaterite particles gradually dissolved from the middle of the particle and released alginate molecules and Ca2+ back into the system. As reaction time increased, the released substances were involved in the next stage of crystallization of CaCO3, in the form of needle-like and shuttle-like aragonite particles sequentially depending on the concentration of alginate molecules and Ca2+. “Egg-box” conformation of alginate and Ca2+ was considered a skeleton for the growth of such aragonite particles. Notably, shuttle-like aragonite particles were composed of “bricks” of several hundred nanometers in size, which were very similar to biogenetic nacreous layers in shells