CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Influence of Ultrasonication Parameters on Physical Characteristics of Olive Oil Model Emulsions Containing Xanthan
Authors
I. Gatsi
O. Kaltsa
I. Mandala
S. Yanniotis
Publication date
30 January 2014
Publisher
'Springer Science and Business Media LLC'
Doi
Cite
Abstract
Ultrasonic emulsification of 20-wt.% o/w emulsions (pH 3.8) containing a food-grade emulsifier (whey protein isolate, WPI, 2.7 wt.%) and xanthan gum (XG, 0.25 wt.%) was performed. Time and amplitude of ultrasonic treatment changed in order to evaluate their influence on emulsion droplet size, viscosity, and stability (by multiple light scattering (MLS) profiles) during cold storage (10 days at 5 °C). Ultrasonic treatment duration changed from 1 to 4 min at constant amplitude of 70 %. Considering the amplitude, intervals of 40, 60, 80, and 100 % were chosen, for a constant time of 1 min. Similarly, time and amplitude conditions were used to treat solutions of XG of 1 wt.% and evaluate their influence on viscosity and how that was related to the stability of the emulsion. Increase in sonication time from 1 to 4 min led to a significant oil droplet size decrease from 1.14 to 0.89 μm (median droplet diameter). The viscosity of emulsions and XG solutions was highly influenced and considerably decreased with sonication time applied. At those conditions, an increase of backscattering was observed from 58.9 to 72.7 % after 10 days of storage, meaning that more stable emulsions, thinner and of smaller oil droplet size were produced. A similar trend was observed when the amplitude was increased, but droplet size and creaming were always greater than those noticed by changing the sonication time. However, the rate of viscosity, droplet size, and stability change was greater by increasing the amplitude rather than by changing the sonication time. © 2014 Springer Science+Business Media New York
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2Fs11947-014-...
Last time updated on 11/12/2019
Digital Repository of Hellenic Managing Authority of the Operational Programme "Education and Lifelong Learning" (EDULLL)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.edulll.gr/edull...
Last time updated on 09/11/2016