research

Effect algebras with the maximality property

Abstract

The maximality property was introduced in [9] in orthomodular posets as a common generalization of orthomodular lattices and orthocomplete orthomodular posets. We show that various conditions used in the theory of e ect algebras are stronger than the maximality property, clear up the connections between them and show some consequences of these conditions. In particular, we prove that a Jauch{Piron e ect algebra with a countable unital set of states is an orthomodular lattice and that a unital set of Jauch{Piron states on an e ect algebra with the maximality property is strongly order determining

    Similar works