research

Comparing algorithms and criteria for designing Bayesian conjoint choice experiments.

Abstract

The recent algorithm to find efficient conjoint choice designs, the RSC-algorithm developed by Sándor and Wedel (2001), uses Bayesian design methods that integrate the D-optimality criterion over a prior distribution of likely parameter values. Characteristic for this algorithm is that the designs satisfy the minimal level overlap property provided the starting design complies with it. Another, more embedded, algorithm in the literature, developed by Zwerina et al. (1996), involves an adaptation of the modified Fedorov exchange algorithm to the multinomial logit choice model. However, it does not take into account the uncertainty about the assumed parameter values. In this paper, we adjust the modified Fedorov choice algorithm in a Bayesian fashion and compare its designs to those produced by the RSC-algorithm. Additionally, we introduce a measure to investigate the utility balances of the designs. Besides the widely used D-optimality criterion, we also implement the A-, G- and V-optimality criteria and look for the criterion that is most suitable for prediction purposes and that offers the best quality in terms of computational effectiveness. The comparison study reveals that the Bayesian modified Fedorov choice algorithm provides more efficient designs than the RSC-algorithm and that the Dand V-optimality criteria are the best criteria for prediction, but the computation time with the V-optimality criterion is longer.A-Optimality; Algorithms; Bayesian design; Bayesian modified Fedorov choice algorithm; Choice; Conjoint choice experiments; Criteria; D-Optimality; Design; Discrete choice experiments; Distribution; Effectiveness; Fashion; G-optimality; Logit; Methods; Model; Multinomial logit; Predictive validity; Quality; Research; RSC-algorithm; Studies; Time; Uncertainty; V-optimality; Value;

    Similar works