research

Thermal elastohydrodynamic lubrication of line contacts

Abstract

A numerical solution to the problem of thermal elastohydrodynamic lubrication of line contacts was obtained by using a finite difference formulation. The solution procedure consists of simultaneous solution of the thermal Reynolds equation, the elasticity equation, and the energy equation subject to appropriate boundary conditions. Pressure distribution, film shape, and temperature distribution were obtained for fully flooded conjunctions, a paraffinic lubricant, and various dimensionless speed parameters while the dimensionless load and materials parameters were held constant. Reduction in the minimum film thickness due to thermal effects (as a ratio of thermal to isothermal minimum film thickness) is given by a simple formula as a function of the thermal loading parameter Q: H(min)/H(min,I) = 10/10+ Q(0.4). Plots of pressure distribution, film shape, temperature distribution, and flow are shown for some representative cases

    Similar works