research
Parametric tip effects for conformable rotor applications
- Publication date
- Publisher
Abstract
A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on aeroelasticity conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and three tip designs were tested on the torsionally soft blades. The designs incorporated a systematic variation in three geometric parameters: sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. Based on the test results, tip parameter variations generated significant rotor performance and loads difference for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not correlate