research

An explicit finite-volume time-marching procedure for turbulent flow calculations

Abstract

A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite-volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. Control volumes are chosen so that smoothing of flow properties, typically required for stability, is not required. Different time steps are used in the different governing equations. A new pressure interpolation scheme is introduced which improves the shock capturing ability of the method. A multi-volume method for pressure changes in the boundary layer allows calculations which use very long and thin control volumes (length/height - 1000). The method is compared with two test cases. Essentially incompressible turbulent boundary layer flow in an adverse pressure gradient is calculated and the computed distributions of mean velocity and shear are in good agreement with the measurements. Transonic viscous flow in a converging diverging nozzle is calculated; the Mach number upstream of the shock is approximately 1.25. The agreement between the calculated and measured shock strength and total pressure losses is good

    Similar works